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Abstract
We investigate critical wetting transitions for fluids adsorbed in wedge-like
geometries where the substrate height varies as a power law, z(x, y) ∼ |x |γ ,
in one direction. As γ is increased from 0 to 1 the substrate shape is
smoothly changed from a planar wall to a linear wedge. The continuous
wetting and filling transitions pertinent to these limiting geometries are known
to have distinct phase boundaries and critical singularities. We predict that
the intermediate critical wetting behaviour occurring for 0 < γ < 1 falls
into one of three possible regimes depending on the values of γ , p and q .
The unbinding behaviour is characterized by a high degree of non-universality,
strongly anisotropic correlations and enhanced interfacial roughness. The shift
in phase boundary and emergence of universal critical behaviour in the linear
wedge limit are discussed in detail.

There is growing interest from theorists and experimentalists in fluid adsorption on micro-
patterned and sculpted solid substrates [1–15]. Surface decoration and structure can
substantially alter the character of fluid adsorption and lead to novel examples of interfacial
phase transitions and enhanced fluctuation-related effects. There is also strong evidence
that there are fundamental connections between geometry-induced and fluctuation-induced
interfacial phenomena at wedge filling transitions [11] and also between wedge filling and
unzipping transitions for double-stranded DNA [16].

The purpose of the present letter is to focus on interfacial adsorption in generalized 3D
wedge-shaped geometries, which are translationally invariant in one direction (along the y-
axis, say), but whose height above some reference plane varies as a power law z(x, y) ∼ |x |γ ,
for large distances in the x-direction. We refer to this particular class of surface geometry
as the gamma wall, which may be viewed as an example of deterministic roughness [17–
19]. Note that by increasing the exponent γ the wall morphology can be changed smoothly
from a planar substrate (γ = 0) to a linear wedge (γ = 1) and eventually to a parallel-
plate geometry (γ = ∞). The adsorption properties and interfacial fluctuation effects in
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each of these geometries, corresponding to wetting [20, 22], filling [9–11] and capillary
condensation [21], respectively, are very different to each other and have attracted considerable
theoretical and experimental interest. The central question that we ask here is: how do the
wetting properties depend on the wall exponent γ ? For substrates that are completely wetted by
the fluid (corresponding to vanishing contact angle θ = 0), recent work [12, 13] has shown that
the adsorption isotherms for the gamma wall show a sensitive dependence on γ ,which facilitate
the crossover from continuous complete wetting (γ = 0) to first-order capillary condensation
(γ = ∞) phenomena, through a sequence of novel interfacial behaviours, which emerge at
intermediate values of γ . Here, we extend this study to the case where the (planar) substrate
undergoes a continuous (critical) wetting transition at some temperature Tw and ask how the
phase boundary and critical exponents characteristic of the interfacial unbinding depend on γ .
As we shall show, this case is considerably more complex than the complete wetting scenario,
due to the presence of large-scale interfacial fluctuation effects, which gives rise to strongly
non-universal critical behaviour and distinct fluctuation regimes. Nevertheless, the critical
properties characteristic of these regimes are precisely those that allow us to understand the
changes in phase boundary and fluctuation-related properties that occur as the wall morphology
is changed from a planar substrate (γ = 0) to a linear wedge (γ = 1).

Consider the interface between a non-planar substrate modelled as an inert spectator phase,
whose height is described by a continuous function z(x, y) in the shape of a generalized wedge
(see figure 1), with the power-law behaviour described above. The substrate is in contact with
a bulk vapour phase at temperature T and pressure p, which we will suppose is tuned to bulk
two-phase coexistence p = psat(T ). The planar wall–fluid interface (corresponding to γ = 0)
is taken to have a continuous wetting transition at temperature Tw, at which the contact angle
θ(T ) vanishes and the mean interfacial height lπ diverges. The mean-field critical singularities
occurring at the wetting transition are found by minimizing the binding potential

W (l) = − t

l p
+

b

lq
, (1)

where t ∝ (Tw − T )/Tw, b > 0 and the exponents p, q > p depend on the ranges of the
intermolecular forces. The critical exponents describing the divergence of the mean interfacial
height lπ ∼ t−βs , roughness ξ⊥ ∼ t−ν⊥ and parallel correlation length ξ‖ ∼ t−ν‖ are given by
the well known expressions

βs = 1

q − p
, ν⊥ = 0(

√
log), ν‖ = (q + 2)

2(q − p)
(2)

and are not altered by thermal fluctuation [20, 21]. Note that the interfacial roughness ξ⊥ is
negligible compared to the wetting film thickness. Also, recall that the contact angle vanishes
as θ ∼ t (2−αs)/2, with 2 − αs = q/(q − p).

Elementary thermodynamic considerations, based on balancing bulk and surface
tension contributions to the grand potential, show that the location of the surface phase
boundary/wetting transition in the gamma-wall geometry depends qualitatively on the
behaviour of r = Aγ /Aπ , corresponding to the ratio of the total to planar (projected) area
of the substrate. Thus, for 0 � γ < 1 for which r = 1, the wetting phase boundary remains at
T = Tw, whilst for γ > 1, for which r = ∞, the wedge is completely filled by liquid (gas) at all
temperatures such that θ(T ) is less (greater) than π/2. Thus, for γ > 1 the wetting transition at
bulk coexistence is superseded by a first-order capillary condensation-like phenomena. This
is closely related to the unbending phase transition occurring on corrugated surfaces [23].
Hereafter, we restrict our attention to the regime γ � 1 and focus on the fate of the planar
wetting transition as γ is increased from 0 to 1.
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Figure 1. A schematic illustration of an interfacial configuration in a generalized wedge geometry.
Diverging length scales are highlighted.

The critical behaviour occurring at the limit γ = 1, corresponding to the filling of a
linear wedge, is known in some detail [9–11]. Writing the wall function z(x, y) = tan α|x |,
with α the tilt angle, observe that the ratio r = sec α > 1. Accordingly, the phase boundary
for the wedge wetting (filling) is shifted and again thermodynamic arguments dictate that it
occurs at a lower filling temperature Tf , satisfying θ(Tf) = α rather than θ(T ) = 0 [1]. For
planar substrates that undergo critical wetting transitions, the linear wedge filling transition
is also continuous, but is characterized by critical exponents distinct from those at critical
wetting [10, 11]. Consider, for example, the divergence of the wedge mid-point interfacial
height lw ∼ t ′−βw , mid-point roughness ξ⊥ ∼ t ′−ν⊥ and correlation length ξy ∼ t ′−νy , where
the latter is measured along the wedge and t ′ ∝ (Tf − T )/Tf . Calculations based on effective
interfacial models show that the criticality falls into two regimes [10]. For p < 4 the critical
exponents belong to a filling mean-field (FMF) regime with critical exponents βw = 1/p,
ν⊥ = 1/4, νy = 1/2 + 1/p, in which the roughness is much smaller than the film thickness,
ξ⊥/ lw � 1. For p > 4, on the other hand, there is a filling fluctuation (FFL) regime and the
critical exponents take the universal values

βw = 1
4 , ν⊥ = 1

4 , νy = 3
4 . (3)

In this regime, ξ⊥ ∼ lw and the interfacial fluctuations are controlled by an effective wedge
wandering exponent, so lw ∼ ξ⊥ ∼ ξ

ζ
y with ζ = 1/3. The universal value of ν⊥ implies that

fluctuation effects, at the filling of a linear wedge, are always important and contrast sharply
with those at the planar wetting transition.

With these preliminaries aside, we can now state precisely the two central questions
addressed in this letter. First, we introduce critical exponents for the mid-point height,
roughness and correlation length as t → 0 by making the identifications

lw ∼ t−β(γ ), ξ⊥ ∼ t−ν⊥(γ ), ξy ∼ t−νy (γ ), (4)

where we have restricted ourselves to the (unknown) critical behaviour occurring in the range
0 < γ < 1. Then, in evaluating the full dependence on γ , p and q of these critical exponents,
we wish to understand two specific points:

(A) How does the critical behaviour reflect the discontinuous shift of the phase boundary from
θ = 0 to α as γ → 1−?

(B) How do the critical exponents change from their wetting to filling values? In particular, are
any combinations of critical exponents continuous in this limit, allowing us to smoothly
‘turn on’ the fluctuation effects?
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The starting point for our calculations is the interfacial Hamiltonian model

H [l] =
∫ ∫

dx dy

[
	

2
(∇l)2 + W (l − z(x, y))

]
, (5)

where l(x, y) is measured relative to the horizontal reference plane z = 0, 	 denotes the
stiffness (surface tension) of the unbinding liquid–vapour interface and W (l) is the binding
potential (1). The model is only valid for substrate height functions z(x, y) that have a shallow
gradient |∇z| � 1 and thus suffices to determine the critical behaviour in the regime of interest,
0 � γ � 1. The critical exponents are insensitive to the precise nature of the substrate shape
near the x = 0 line and the power-law shape may be cut off at some appropriate short distance.

The results of our analytical and numerical studies show that the critical behaviour
is strongly non-universal and depends sensitively on the values of γ , p and q . We
concentrate on the interpretation of these results, making brief mention of our calculational
details [24] at the end of our letter. Figure 2 shows how the critical behaviour falls into three
possible categories labelled the planar mean-field (
MF), geometrical mean-field (GMF) and
geometrical fluctuation (GFL) regimes, respectively. Within the 
MF regime, 0 � γ < γ1(q)

with

γ1(q) = 2

2 + q
, (6)

the substrate shape does not alter the values of the wetting critical exponents and β(γ ), ν⊥(γ )

and νy(γ ) are identical to βs, ν⊥ and ν‖ shown in (2). For γ > γ1, corresponding to the
geometrical, GMF and GFL regimes, on the other hand, the wedge geometry alters the critical
exponents from their planar values. In both these regimes the interfacial height diverges with
a modified exponent

β(γ ) = (2 − αs)

2

γ

(1 − γ )
. (7)

Note that the critical exponent β(γ ) > βs, for γ > γ1, so in the limit t → 0 the mid-point
height lw 
 lπ . In figure 3 we show numerical results for the mid-point height for the case
of non-retarded van der Waals forces ( p = 2, q = 3) and γ = 3/5, for which we predict
β(3/5) = 9/4. Notice that the initial divergence of the interfacial height is planar-like (with
critical exponent βs = 1), but crosses over to the asymptotic geometrical result as t → 0. The
boundary between the GMF and 
MF regimes occurs when β(γ1) = βs, so there is a smooth
crossover in the critical behaviour for the interfacial height at the 
MF/GMF separatrix. The
GMF and GFL regimes are distinguished from each other by the behaviour of the correlation
length critical exponents ν⊥(γ ) and νy(γ ). For p < 4 the GMF regime extends from γ1 to
the linear wedge limit γ = 1−. For p > 4, on the other hand, the GMF regime terminates at
γ = γ2, where

γ2(q, p) = 2 p

q(p − 4) + 2 p
. (8)

Within the GMF regime, the roughness is still small compared to the film thickness, but is
larger than in the 
MF regime and νGMF

⊥ (γ ) > 0. There is pronounced non-universality in
this regime with

νGMF
⊥ (γ ) = 1

4
+

β(γ )

4

[
p − 2(1 − γ )

γ

]
(9)

and

νGMF
y (γ ) = 1

2
+ β(γ )

(
1 +

p

2

)
. (10)
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Figure 2. Critical regimes for the gamma-wall wedge. The curves c1 and c2 represent the
separatrixes γ1(q) and γ2(q, p), obtained for q = p + n, with n fixed.
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Figure 3. A log–log plot of the mid-point height �w versus t for γ = 3/5 and dispersion
forces, showing crossover from planar-like (
MF) to GMF behaviour, with asymptotic criticality
at β(3/5) = 9/4.

There is a smooth change from the 
MF to the GMF regime for the fluctuation critical
exponents, so, at the separatrix, νGMF

⊥ (γ1) = 0. For γ > γ2 (relevant for systems with p > 4
only), corresponding to the GFL regime, on the other hand, the wedge wetting transition in
the gamma wall is fluctuation dominated and we can identify

νGFL
⊥ = β(γ ), νGFL

⊥ = ζ(γ )νGFL
y , (11)

where ζ(γ ) = γ /(γ + 2) is the wedge wandering exponent for the gamma wall. Thus,
in the GFL regime one has simple scaling relations between the diverging length scales,
lw ∼ ξ⊥ ∼ ξ

ζ(γ )
y . For systems with purely short-ranged forces, the GFL regime spans the

entire range 0 < γ < 1 and β(γ ) = ν‖γ /(1 − γ ).
Returning to the more general case, observe again that there is a smooth crossover between

the behaviour of the fluctuation critical exponents at the separatrix between the GMF and GFL
regimes with, for example, νGMF

⊥ (γ2) = β(γ2). The geometrical regimes are also characterized
by a strong degree of anisotropy, with the correlation length ξy much greater than the lateral
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extent of the filled region ξx ∼ l1/γ
w . Interfacial fluctuations within the GMF and GFL regimes

are pseudo-one-dimensional, in contrast with those in the 
MF regime.
At this point, a number of remarks are in order.

(I) The existence of three fluctuation regimes for critical wetting in the generalized wedge
geometry contrasts with the case of complete wetting [12, 13], for which there are only
two and no significant enhancement of fluctuation effects. Intriguingly, the numbers of
regimes for critical and complete wetting in the gamma-wall wedge are the same as the
numbers of regimes induced by thermal (or impurity-induced) fluctuation effects at planar
critical and complete wetting transitions, respectively [21].

(II) In the geometry-affected regimes (GMF and GFL), the equilibrium profile leq(x) has a
particularly simple structure which can be seen to directly lead to the critical exponent
identification (7). Near the centre of the wedge, the interface is flat and at nearly constant
height leq(x) ∼ lw. At some distance ξx ∼ l1/γ

w , the interface strikes the wall and thereafter
closely follows its shape. The interfacial height at the wedge mid-point is determined by
the simple condition that the local angle of incidence between the interface and wall
is equal to the contact angle. Observe that, as γ → 1−, the critical exponent for the
interfacial height diverges. Including amplitude factors, we find that the mid-point height
diverges as lw ∼ (tw/t)β(γ ), with tw a non-universal constant. As γ → 1− this implies
that the height becomes macroscopic for all t < tw, which represents a shift of the phase
boundary from t = 0 to tw. This is equivalent to the shift of the phase boundary from
θ = 0 to α for linear wedge filling and answers our first question (A).

(III) Some aspects of the interfacial fluctuations show a smooth change from wetting to filling-
like behaviour, as γ is increased, and allow us to give a quantitative answer to question (B).
This is most simply seen in the wedge wandering exponent ζ(γ ) = γ /(γ + 2) pertinent
to the GFL regime, which generalizes the linear wedge result ζ = 1/3. Less obvious is
the behaviour of the critical exponent ratio β(γ )/ν⊥(γ ), which also recovers the linear
wedge result, such that

lim
γ→1−

β(γ )

ν⊥(γ )
= βw

ν⊥
, (12)

where the RHS is equal to 4/p and 1 for p < 4 and p > 4, respectively.

For systems with non-retarded van der Waals forces (i.e. with binding potential exponents
p = 2, q = 3) we make the following predictions. The planar result pertinent to the standard
critical wetting transition βs = 1, ν⊥ = 0 and ν‖ = 5/2 are unchanged within a 
MF regime
corresponding to 0 < γ < 2/5. For 1 > γ > 2/5 the transition belongs to the GMF and the
critical exponents are geometry sensitive. For example, at γ = 1/2 we predict

β(1/2) = 3
2 , ν⊥(1/2) = 1

4 , νy(1/2) = 7
2 . (13)

The value of the roughness critical exponent ν⊥(1/2) = 1/4 is significant, since it is
independent of the value of q and is therefore also valid for tricritical wetting. This degree of
universality is similar to the true universality of ν⊥ predicted for linear wedge filling.

To finish, we make brief mention of the methods used in our calculations. In both the 
MF
and GMF regimes the roughness is much smaller than the interfacial height and mean-field
methods are appropriate. Numerical results obtained by minimizing (5) are complemented
by analytical approaches following approximate solutions to the Euler–Lagrange equation,
based on standard variational methods. This is straightforward in the GMF regime, since
the profile has a particularly simple structure. The results for the correlation length critical
exponent νy and roughness exponent ν⊥ were first obtained by solving the Ornstein–Zernike
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equation for the structure factor S(Q), corresponding to the Fourier transform of the mid-point
height–height correlation function 〈l(y1)l(y2)〉 with respect to wavevectors along the wedge.
The critical behaviour in the GMF and GFL regimes can also be described using an effective
one-dimensional model Hamiltonian Hγ [l], which describes the energy cost of constrained
interfacial configurations in terms of the mid-point height l(y) = l(x = 0, y) only. The model
can be derived from the underlying interfacial model (5) using standard methods, which have
been previously applied to the linear wedge problem [10]. The dimensional reduction, explicit
in this method, is justified by the extreme anisotropy of fluctuations in the GMF and GFL
regimes as t → 0.

The reduced dimensional effective interfacial Hamiltonian has the form

Hγ [l] =
∫

dy

[
σ l1/γ

(
dy

dl

)2

+ Vγ (l)

]
, (14)

where σ is a non-universal constant (proportional to 	) and Vγ (l) is the wedge binding
potential. Minimization of Vγ (l) identically recovers the mean-field expression for lw in
the 
MF and GMF regimes. For large l this has the expansion

Vγ (l) ∝ l1/γ [(θ2 − cγ l2(1−γ )/γ ) + dγ l−p], (15)

where cγ and dγ are non-universal constants. In the limit γ → 1−, we find cγ → α2 and
dγ → t/(p − 1), so both Vγ (l) and (14) smoothly recover the linear wedge model considered
in [10]. From the one-dimensional model it is straightforward to derive all the critical exponents
quoted earlier using standard methods.

In summary, we have investigated the geometry dependence of critical wetting exponents
for fluids adsorbed in power-law wedges. Our results show that surface shape has both
a stronger (and subtler) effect on critical wetting than complete wetting transitions, with
criticality falling into three possible regimes which facilitate the crossover from planar wetting
to linear wedge filling.

The authors are grateful to Dr Carlos Rascón and Dr A J Wood for very helpful discussions.
AS wishes to thank the EPSRC for financial support.
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